题目内容
(1)解下列方程:①x
2-2x-2=0;②2x
2+3x-1=0;③2x
2-4x+1=0;④x
2+6x+3=0;
(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式
.
分析:(1)直接代入公式计算即可.
(2)其中方程①③④的一次项系数为偶数2n(n是整数).然后再利用求根公式代入计算即可.
解答:解:(1)①解方程x
2-2x-2=0①,
∵a=1,b=-2,c=-2,
∴x=
=
=1
±,
∴x
1=1+
,x
2=1
-.
②解方程2x
2+3x-l=0,
∵a=2,b=3,c=-1,
∴x=
=
,
∴x
1=
,x
2=
.(2分)
③解方程2x
2-4x+1=0,
∵a=2,b=-4,c=1,
∴x=
=
=
,
x
1=
,x
2=
.(3分)
④解方程x
2+6x+3=0,
∵a=1,b=6,c=3,
∴x=
=
=-3
±,
∴x
1=
-3+,x
2=
-3-.(4分)
(2)其中方程①③④的一次项系数为偶数2n(n是整数).(8分)
一元二次方程ax
2+bx+c=0,其中b
2-4ac≥0,b=2n,n为整数.
∵b
2-4ac≥0,即(2n)
2-4ac≥0,
∴n
2-ac≥0,
∴x=
=
=
=
(11分)
∴一元二次方程ax
2+2nx+c=0(n
2-ac≥0)的求根公式为
.(12分)
点评:本题主要考查了解一元二次方程的公式法.关键是正确理解求根公式,正确对二次根式进行化简.
练习册系列答案
相关题目