题目内容
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论中不正确的是( )
A.4ac﹣b2<0
B.2a﹣b=0
C.a+b+c<0
D.点(x1,y1)、(x2,y2)在抛物线上,若x1<x2,则y1<y2
【答案】D
【解析】
试题分析:根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.
A、函数与x轴有两个交点,则b2﹣4ac>0,即4ac﹣b2<0,故本选项正确;B、函数的对称轴是x=﹣1,即﹣=﹣1,则b=2a,2a﹣b=0,故本选项正确;C、当x=1时,函数对应的点在x轴下方,则a+b+c<0,则本选项正确;D、因为不知道两点在对称轴的那侧,所以y1和y2的大小无法判断,则本选项错误.
练习册系列答案
相关题目