题目内容
【题目】如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形APQ.
(1)求点B的坐标.
(2)在点P运动过程中,∠ABQ的大小是否发生改变?若不改变,求出其大小;若改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求点P的坐标.
【答案】(1) 点B的坐标为(,1);(2)∠ABQ的大小始终不变,∠ABQ=90°;(3) P的坐标为(-,0)
【解析】
(1)过点B作BC⊥x轴于点C,根据等边三角形的性质可得∠AOB=60°,BO=OA=2,从而求出∠BOC=30°,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出BC和OC,从而求出点B的坐标;
(2)根据等边三角形的性质可得AP=AQ,AO=AB,∠PAQ=∠OAB=60°,从而证出∠PAO=∠QAB,然后利用SAS证出△APO≌△AQB,从而得出∠ABQ=∠AOP=90°;
(3)根据题意,画出图形,然后根据平行线的性质可得∠BQO=90°,∠BOQ=∠ABO=60°,从而求出∠OBQ=30°,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出OQ和BQ,再根据(2)中全等可得OP=BQ,从而求出点P的坐标.
解:(1)如图①,过点B作BC⊥x轴于点C.
∵△AOB为等边三角形,且OA=2,
∴∠AOB=60°,BO=OA=2.
∴∠BOC=30°.
又∵∠OCB=90°,
∴BC=OB=1,OC=.
∴点B的坐标为(,1).
(2)∠ABQ的大小始终不变.
∵△APQ,△AOB均为等边三角形,
∴AP=AQ,AO=AB,∠PAQ=∠OAB=60°.
∴∠PAO=∠QAB.
在△APO与△AQB中,
∴△APO≌△AQB(SAS).
∴∠ABQ=∠AOP=90°.
(3)如图②,当OQ∥AB时,点P在x轴的负半轴上,点Q在点B的下方,
∵AB∥OQ,
∴∠BQO=180°-∠ABQ=90°,∠BOQ=∠ABO=60°.
∴∠OBQ=30°.
又OB=OA=2,
∴OQ=OB=1,BQ=,
由(2)可知,△APO≌△AQB,
∴OP=BQ=.
∴此时点P的坐标为(-,0).