题目内容
【题目】已知∠MAN=90°,在射线AM上取一点B,在射线AN上取一点C,连接BC,再作点A关于直线BC的对称点D,连接AD、BD,移动点C,当2AD=BC时,∠ABD的度数是_____.
【答案】30 或150
【解析】
分两种情况,取BC的中点E,连接AE,DE,依据直角三角形斜边上中线的性质,即可得到△ADE是等边三角形,进而依据轴对称的性质得出∠ABD的度数.
解:分两种情况:
如图,当AB>AC时,取BC的中点E,连接AE,DE,
则AE=DE= BC,
即BC=2AE=2DE,
又∵BC=2AD,
∴AD=AE=DE,
∴△ADE是等边三角形,
∴∠AED=60°,
又∵BC垂直平分AD,
∴∠AEC=30°,
又∵BE=AE,
∴∠ABC= ∠AEC=15°,
∴∠ABD=2∠ABC=30°;
如图,当AB<AC时,同理可得∠ACD=30°,
又∵∠BAC=∠BDC=90°,
∴∠ABD=150°,
故答案为:30°或150°.
练习册系列答案
相关题目