题目内容
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地轿车的平均速度大于货车的平均速度,如图,线段OA、折线BCD分别表示两车离甲地的距离单位:千米与时间单位:小时之间的函数关系.
线段OA与折线BCD中,______表示货车离甲地的距离y与时间x之间的函数关系.
求线段CD的函数关系式;
货车出发多长时间两车相遇?
【答案】(1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系;(2);(3)货车出发小时两车相遇.
【解析】
(1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;
(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;
(3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.
线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,
理由:千米时,,
,轿车的平均速度大于货车的平均速度,
线段OA表示货车离甲地的距离y与时间x之间的函数关系,
故答案为:OA;
设CD段函数解析式为,
,在其图象上,
,解得,
段函数解析式:;
设线段OA对应的函数解析式为,
,得,
即线段OA对应的函数解析式为,
,解得,
即货车出发小时两车相遇.
【题目】某公司根据市场计划调整投资策略,对A、B两种产品进行市场调查,收集数据如下表:
项目 产品 | 年固定成本 (单位:万元) | 每件成本 (单位:万元) | 每件产品销售价 (万元) | 每年最多可生产的件数 |
A | 20 | m | 10 | 200 |
B | 40 | 8 | 18 | 120 |
其中,m是待定系数,其值是由生产A的材料的市场价格决定的,变化范围是6≤m<8,销售B产品时需缴纳x2万元的关税.其中,x为生产产品的件数.假定所有产品都能在当年售出,设生产A,B两种产品的年利润分别为y1、y2(万元).
(1)写出y1、y2与x之间的函数关系式,注明其自变量x的取值范围.
(2)请你通过计算比较,该公司生产哪一种产品可使最大年利润更大?