题目内容

正方形ABCD,E是BC中点,∠AEF=90°,∠1=∠2
(1)线段AE与EF的数量关系为______
(2)在线段BC上,若E不是BC中点,上述关系是否成立?若成立,加以证明;若不成立,说明理由?
(1)取AB的中点G,
∵正方形ABCD,E是BC中点,
∴AG=BG=BE=EC,
∴△BEG是等腰直角三角形,
∴∠BGE=45°,
∠AGE=180°-45°=135°,
∵∠1=∠2,
∴∠ECF=90°+45°=135°,
∴∠AGE=∠ECF,
∵∠AEF=90°,
∴∠AEB+∠CEF=180°-90°=90°,
又∵∠BAE+∠AEB=180°-90°=90°,
∴∠BAE=∠CEF,
在△AGE和△ECF中,
∠BAE=∠CEF
AG=EC
∠AGE=∠ECF

∴△AGE≌△ECF(ASA),
∴AE=EF;

(2)结论AE=EF仍然成立.
理由如下:在AB上截取BG=BE,
则△BGE是等腰直角三角形,
∴∠BGE=45°,
∠AGE=180°-45°=135°,
∵AG+BG=AB,BE+EC=BC,AB=BC,
∴AG=EC,
∵∠1=∠2,
∴∠ECF=90°+45°=135°,
∴∠AGE=∠ECF,
∵∠AEF=90°,
∴∠AEB+∠CEF=180°-90°=90°,
又∵∠BAE+∠AEB=180°-90°=90°,
∴∠BAE=∠CEF,
在△AGE和△ECF中,
∠BAE=∠CEF
AG=EC
∠AGE=∠ECF

∴△AGE≌△ECF(ASA),
∴AE=EF.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网