题目内容
【题目】如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
【答案】(1)y=x2﹣x﹣4;(2)(8﹣2,﹣)、(0,﹣4)、(,﹣);(3)(,﹣).
【解析】
试题分析:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;
(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m, m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E(0,﹣4);当EC=DE时,(m﹣8)2+(m﹣4)2=(m﹣3)2+(m﹣4)2解得m5=5.5,∴E(,﹣).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).
(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为m2﹣m﹣4,∵△PBD的面积S=S梯形﹣S△BOD﹣S△PFD=m[4﹣(m2﹣m﹣4)]﹣(m﹣3)[﹣(m2﹣m﹣4)]﹣×3×4=﹣m2+m=﹣(m﹣)2+,∴当m=时,△PBD的最大面积为,∴点P的坐标为(,﹣).