题目内容
【题目】菱形ABCD中、∠BAD=120°,点O为射线CA 上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.
(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;
(2)如图②,点O在CA的延长线上,且OA=AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;
(3)点O在线段AC上,若AB=6,BO=2,当CF=1时,请直接写出BE的长.
【答案】(1)CA=CE+CF.(2)CF-CE=AC.(3)BE的值为3或5或1.
【解析】
(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;
(2)结论:CF-CE=AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.只要证明△FOG≌△EOC(ASA)即可解决问题;
(3)分四种情形画出图形分别求解即可解决问题.
(1)如图①中,结论:CA=CE+CF.
理由:∵四边形ABCD是菱形,∠BAD=120°
∴AB=AD=DC=BC,∠BAC=∠DAC=60°
∴△ABC,△ACD都是等边三角形,
∵∠DAC=∠EAF=60°,
∴∠DAF=∠CAE,
∵CA=AD,∠D=∠ACE=60°,
∴△ADF≌△ACE(SAS),
∴DF=CE,
∴CE+CF=CF+DF=CD=AC,
∴CA=CE+CF.
(2)结论:CF-CE=AC.
理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.
∵∠GOC=∠FOE=60°,
∴∠FOG=∠EOC,
∵OG=OC,∠OGF=∠ACE=120°,
∴△FOG≌△EOC(ASA),
∴CE=FG,
∵OC=OG,CA=CD,
∴OA=DG,
∴CF-EC=CF-FG=CG=CD+DG=AC+AC=AC,
(3)作BH⊥AC于H.∵AB=6,AH=CH=3,
∴BH=3,
如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.
∵OB=2,
∴OH==1,
∴OC=3+1=4,
由(1)可知:CO=CE+CF,
∵OC=4,CF=1,
∴CE=3,
∴BE=6-3=3.
如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.
由(2)可知:CE-CF=OC,
∴CE=4+1=5,
∴BE=1.
如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.
同法可证:OC=CE+CF,
∵OC=CH-OH=3-1=2,CF=1,
∴CE=1,
∴BE=6-1=5.
如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.
同法可知:CE-CF=OC,
∴CE=2+1=3,
∴BE=3,
综上所述,满足条件的BE的值为3或5或1.