题目内容

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到精英家教网什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.
分析:(1)已知了A、B两点的坐标即可得出OA、OB的长,在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的长,即可得出C点的坐标.然后用待定系数法即可求出抛物线的解析式;
(2)本题的关键是得出D点的坐标,CD平分∠BCE,如果连接O′D,那么根据圆周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°由此可得出D的坐标为(4,-5).根据B、D两点的坐标即可用待定系数法求出直线BD的解析式;
(3)本题要分两种情况进行讨论:
①过D作DP∥BC,交D点右侧的抛物线于P,此时∠PDB=∠CBD,可先用待定系数法求出直线BC的解析式,然后根据BC与DP平行,那么直线DP的斜率与直线BC的斜率相同,因此可根据D的坐标求出DP的解析式,然后联立直线DP的解析式和抛物线的解析式即可求出交点坐标,然后将不合题意的舍去即可得出符合条件的P点.
②同①的思路类似,先作与∠CBD相等的角:在O′B上取一点N,使BN=BM.可通过证△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一样,先求直线DN的解析式,进而可求出其与抛物线的交点即P点的坐标.
综上所述可求出符合条件的P点的值.
点评:本题着重考查了待定系数法求二次函数解析式、三角形相似及全等、探究角相等的构成情况等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网