题目内容
【题目】如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.试探索BF与CF的数量关系,写出你的结论并证明.
【答案】BF=2CF.见解析
【解析】
试题分析:连接AF,求出CF=AF,∠BAF=90°,再根据AB=AC,∠BAC=120°可求出∠B的度数,由直角三角形的性质即可求出BF=2AF=2CF,于是得到结论.
解:BF=2CF.
证明:连接AF,
∵AB=AC,∠BAC=120°
∴∠B=∠C=30°,
∵EF垂直平分AC,
∴AF=CF,
∴∠CAF=∠C=30,
∴∠AFB=∠CAF+∠C=60°,
∴∠BAF=180°﹣∠B﹣∠AFB=90°,
∴BF=2AF,
∴BF=2CF.
练习册系列答案
相关题目