题目内容
【题目】如图,DB∥AC,且DB=AC,E是AC的中点.
(1)求证:四边形BDEC是平行四边形;
(2)连接AD、BE,△ABC添加一个条件: ,使四边形DBEA是矩形(不需说明理由).
【答案】(1)见解析;(2)AB=BC.
【解析】
(1)证明DB=EC. DB∥EC即可;
(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
(1)证明:∵E是AC中点,
∴EC=AC.
∵DB=AC,
∴DB=EC.
又∵DB∥EC,
∴四边形DBCE是平行四边形.
(2)如图,连接AD,BE,
添加AB=BC.
理由:∵DB∥AE,DB=AE,
∴四边形DBEA是平行四边形.
∵BC=DE,AB=BC,
∴AB=DE.
∴ADBE是矩形.
故答案为:AB=BC.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现次数 | 8 | 10 | 7 | 9 | 16 | 10 |
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.