题目内容
【题目】如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(18,0),B点的坐标为(0,24).
(1)求AB的值;
(2)点C在OA上,且BC平分∠OBA,求点C的坐标;
(3)在(2)的条件下,点M在第三象限,点D为y轴上的一个点,连接DM交x轴于点H,连接CM,点F为BC的中点,点E为AD的中点,AD与BC交于点G,,点H为DM的中点,当∠MCG-∠DGF=∠OAB,且AD=CM时,求线段EF的长.
【答案】(1)30;(2)C(8,0);(3)
【解析】
(1)根据勾股定理计算即可;(2)过点C作CN⊥AB于点N,则OC=CN,设OC的长为x,则CA的长为18-x,根据即可求解;(3)如图,过点M作MI⊥x轴于点I,过点D作DJ⊥AB于点J,证明△MHI≌△DHO,进而可得DO=MI,再证明△MCI≌△DAO,
得到∠MCI=∠DAO,再结合已知得到AD平分∠OAB,根据求出OD的长,从而得到点D的坐标,求出点E、F的坐标,再根据两点间距离公式求出EF的长即可.
(1)∵A点的坐标为(18,0),B点的坐标为(0,24),
∴OA=18,OB=24,
∴;
(2)如图,过点C作CN⊥AB于点N,设OC的长为x,则OC=CN=x,CA=18-x,
∴,即,
解得x=8,
∴点C的坐标为(8,0);
(3)如图,过点M作MI⊥x轴于点I,过点D作DJ⊥AB于点J,
∵点H为DM的中点,
∴DH=HM,
又∵∠MHI=∠DHO,∠MIO=∠DOH,
∴△MHI≌△DHO,
∴DO=MI,
∵AD=CM,
△MCI≌△DAO,
∴∠MCI=∠DAO,
∵∠MCG-∠DGF=∠OAB,∠OCG=∠CGA+∠CAG,
∴∠MCI=∠DAB,
∴∠DAB=∠DAO,即AD平分∠OAB,
∴DO=DJ,
设DO=x,则BD=24-x,
∴,
即,
解得x=9,
∴点D的坐标为(0,9),
∴点,,
∴.
【题目】某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号 | 2号 | 3号 | 4号 | 5号 | 总数 | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)填空:甲班的优秀率为 ,乙班的优秀率为 ;
(2)填空:甲班比赛数据的中位数为 ,乙班比赛数据的中位数为 ;
(3)填空:估计两班比赛数据的方差较小的是 班(填甲或乙)
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.