题目内容
如图,一只蚂蚁欲从圆柱形桶外的A点爬到桶内的B点处寻找食物,已知点A到桶口的距离AC为12cm,点B到桶口的距离BD为8cm,CD的长为15cm,那么蚂蚁爬行的最短路程是多少?


如图,延长BD,在延长线上取点B',使BD=B'D=8cm,
连接AB',交CD与点E,连接BE,
则最短的路线应该是沿AE、EB爬行即可.
因为两点之间线段最短.
在△AB′F中,∠F=90°,AF=15cm,B′F=12+8=20cm,
由勾股定理,得AB′=25cm.
∵AC∥B′D,
∴△ACE∽△B'DE,
∴AC:B'D=AE:B'E=12:8=3:2,
∴AE=25×
=15cm,
BE=B'E=25×
=10cm,
∴AE+BE=25cm.
即蚂蚁爬行的最短路程是25cm.

连接AB',交CD与点E,连接BE,
则最短的路线应该是沿AE、EB爬行即可.
因为两点之间线段最短.
在△AB′F中,∠F=90°,AF=15cm,B′F=12+8=20cm,
由勾股定理,得AB′=25cm.
∵AC∥B′D,
∴△ACE∽△B'DE,
∴AC:B'D=AE:B'E=12:8=3:2,
∴AE=25×
3 |
5 |
BE=B'E=25×
2 |
5 |
∴AE+BE=25cm.
即蚂蚁爬行的最短路程是25cm.


练习册系列答案
相关题目