题目内容
【题目】如图,⊙与菱形在平面直角坐标系中,点的坐标为点的坐标为,点的坐标为,点在轴上,且点在点的右侧.
()求菱形的周长.
()若⊙沿轴向右以每秒个单位长度的速度平移,菱形沿轴向左以每秒个单位长度的速度平移,设菱形移动的时间为(秒),当⊙与相切,且切点为的中点时,连接,求的值及的度数.
()在()的条件下,当点与所在的直线的距离为时,求的值.
【答案】(1)菱形的周长为8;(2), ;(3)
【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为 M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.
试题解析:( )如图1所示:过点作,垂足为,
∵, ,
∴, ,
∴,
∵四边形为菱形,
∴,
∴菱形的周长.
()如图2所示,⊙与轴的切线为, 中点为,
∵,
∴,
∵,且为中点,
∴, ,
∴,
解得.
平移的图形如图3所示:过点作,
垂足为,连接, 为⊙与切点,
∵由()可知, , ,
∴,
∴,
∴,
∵四边形是菱形,
∴,
∵为切线,
∴,
∵为的中点,
∴,
∴是等腰直角三角形,
∴,
∴.
()如图4所示:连接,过点作,垂足为,作,垂足为,
∵四边形为菱形, ,
∴.
∵、是圆的切线
∴,
∵。
∴,
∴,
∴.
如图5所示:连接,过点作,垂足为,作,垂足为,
∵四边形为菱形, ,
∴,
∴,
∵、是圆的切线,
∴,
∵,
∴,
∴,
∴.
综上所述,当或时,圆与相切.