题目内容
【题目】有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).
①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
②如果方程M有两根符号相同,那么方程N的两根符号也相同;
③如果方程M和方程N有一个相同的根,那么这个根必是x=1;
④如果5是方程M的一个根,那么是方程N的一个根.
【答案】①②④
【解析】试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;
②∵和符号相同, 和符号也相同,
∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,错误;
④∵5是方程M的一个根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一个根,正确.
故正确的是①②④.
练习册系列答案
相关题目