ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚ¾ØÐÎOABCÖУ¬ÒÑÖªA¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪA£¨4£¬0£©¡¢C£¨0£¬2£©£¬DΪOAµÄÖе㣮ÉèµãPÊÇ¡ÏAOCƽ·ÖÏßÉϵÄÒ»¸ö¶¯µã£¨²»ÓëµãOÖغϣ©£®£¨1£©ÊÔÖ¤Ã÷£ºÎÞÂÛµãPÔ˶¯µ½ºÎ´¦£¬PC×ÜÓëPDÏàµÈ£»
£¨2£©µ±µãPÔ˶¯µ½ÓëµãBµÄ¾àÀë×îСʱ£¬ÊÔÈ·¶¨¹ýO¡¢P¡¢DÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÉèµãEÊÇ£¨2£©ÖÐËùÈ·¶¨Å×ÎïÏߵĶ¥µã£¬µ±µãPÔ˶¯µ½ºÎ´¦Ê±£¬¡÷PDEµÄÖܳ¤×îС£¿Çó³ö´ËʱµãPµÄ×ø±êºÍ¡÷PDEµÄÖܳ¤£»
£¨4£©ÉèµãNÊǾØÐÎOABCµÄ¶Ô³ÆÖÐÐÄ£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹¡ÏCPN=90¡ã£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£®
·ÖÎö£º±¾Ìâ×ۺϿ¼²éÁËÈý½ÇÐÎÈ«µÈ¡¢Ò»´Îº¯Êý¡¢¶þ´Îº¯Êý£¬¼°Ï߶Î×î¶ÌºÍ̽Ë÷ÐÔµÄÎÊÌ⣮
£¨1£©Í¨¹ý¡÷POC¡Õ¡÷POD¶øÖ¤µÃPC=PD£®
£¨2£©Ê×ÏÈҪȷ¶¨PµãµÄλÖã¬ÔÙÇó³öP¡¢FÁ½µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨ÇóµÄÅ×ÎïÏß½âÎöʽ£»
£¨3£©´ËÎÊÊ×ÏÈÀûÓöԳÆÐÔÈ·¶¨³öPµãλÖÃÊÇECÓë¡ÏAOCµÄƽ·ÖÏߵĽ»µã£¬ÔÙÀûÓÃÅ×ÎïÏßÓëÖ±ÏßCEµÄ½âÎöʽÇó³ö½»µãPµÄ×ø±ê£®½ø¶øÇóµÄ¡÷PEDµÄÖܳ¤£»
£¨4£©ÒªÊ¹¡ÏCPN=90¡ã£¬ÔòPµãÊÇÒÔCNµÄÖеãΪԲÐÄÒÔCNΪֱ¾¶µÄÔ²Óë½Çƽ·ÖÏߵĽ»µã£¬Óɴ˾ÍÒ×ÓÚд³öPµãµÄ×ø±ê£®
£¨1£©Í¨¹ý¡÷POC¡Õ¡÷POD¶øÖ¤µÃPC=PD£®
£¨2£©Ê×ÏÈҪȷ¶¨PµãµÄλÖã¬ÔÙÇó³öP¡¢FÁ½µã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨ÇóµÄÅ×ÎïÏß½âÎöʽ£»
£¨3£©´ËÎÊÊ×ÏÈÀûÓöԳÆÐÔÈ·¶¨³öPµãλÖÃÊÇECÓë¡ÏAOCµÄƽ·ÖÏߵĽ»µã£¬ÔÙÀûÓÃÅ×ÎïÏßÓëÖ±ÏßCEµÄ½âÎöʽÇó³ö½»µãPµÄ×ø±ê£®½ø¶øÇóµÄ¡÷PEDµÄÖܳ¤£»
£¨4£©ÒªÊ¹¡ÏCPN=90¡ã£¬ÔòPµãÊÇÒÔCNµÄÖеãΪԲÐÄÒÔCNΪֱ¾¶µÄÔ²Óë½Çƽ·ÖÏߵĽ»µã£¬Óɴ˾ÍÒ×ÓÚд³öPµãµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©¡ßµãDÊÇOAµÄÖе㣬
¡àOD=2£¬
¡àOD=OC£®
ÓÖ¡ßOPÊÇ¡ÏCODµÄ½Çƽ·ÖÏߣ¬
¡à¡ÏPOC=¡ÏPOD=45¡ã£¬
¡à¡÷POC¡Õ¡÷POD£¬
¡àPC=PD£®
£¨2£©¹ýµãB×÷¡ÏAOCµÄƽ·ÖÏߵĴ¹Ïߣ¬´¹×ãΪP£¬µãP¼´ÎªËùÇó£®
Ò×ÖªµãFµÄ×ø±êΪ£¨2£¬2£©£¬¹ÊBF=2£¬×÷PM¡ÍBF£¬
¡ß¡÷PBFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àPM=
BF=1£¬
¡àµãPµÄ×ø±êΪ£¨3£¬3£©£®
¡ßÅ×ÎïÏß¾¹ýԵ㣬
¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx£®
ÓÖ¡ßÅ×ÎïÏß¾¹ýµãP£¨3£¬3£©ºÍµãD£¨2£¬0£©£¬
¡àÓÐ
½âµÃ
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x£»
£¨3£©ÓɵÈÑüÖ±½ÇÈý½ÇÐεĶԳÆÐÔÖªDµã¹ØÓÚ¡ÏAOCµÄƽ·ÖÏߵĶԳƵ㼴ΪCµã£®
Á¬½ÓEC£¬ËüÓë¡ÏAOCµÄƽ·ÖÏߵĽ»µã¼´ÎªËùÇóµÄPµã£¨ÒòΪPE+PD=EC£¬¶øÁ½µãÖ®¼äÏ߶Î×î¶Ì£©£¬´Ëʱ¡÷PEDµÄÖܳ¤×îС£®
¡ßÅ×ÎïÏßy=x2-2xµÄ¶¥µãEµÄ×ø±ê£¨1£¬-1£©£¬CµãµÄ×ø±ê£¨0£¬2£©£¬
ÉèCEËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬
ÔòÓÐ
£¬
½âµÃ
£®
¡àCEËùÔÚÖ±ÏߵĽâÎöʽΪy=-3x+2£®
µãPÂú×ã
£¬
½âµÃ
£¬
¹ÊµãPµÄ×ø±êΪ(
£¬
)£®
¡÷PEDµÄÖܳ¤¼´ÊÇCE+DE=
+
£»
£¨4£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄPµã£®¾ØÐεĶԳÆÖÐÐÄΪ¶Ô½ÇÏߵĽ»µã£¬¹ÊN£¨2£¬1£©£®
¢Ùµ±PµãÔÚNµãÉÏ·½Ê±£¬ÓÉ£¨2£©ÖªF£¨2£¬2£©£¬ÇÒ¡ÏNFC=90¡ã£¬ÏÔÈ»Fµã·ûºÏPµãµÄÒªÇ󣬹ÊP£¨2£¬2£©£»
¢Úµ±PµãÔÚNµãÏ·½Ê±£¬ÉèP£¨a£¬a£©£¬Ôò£º¡ßC£¨0£¬2£©£¬N£¨2£¬1£©£¬¡àÓɹ´¹É¶¨ÀíµÃ£¬CP2+PN2=CN2£¬¼´a2+£¨a-2£©2+£¨2-a£©2+£¨1-a£©2=5£¬¼´4a2-10a+4=0£¬½âµÃa=
»òa=2£¬¹ÊP£¨
£¬
£©£¬
×ÛÉÏ¿ÉÖª£º´æÔÚµãP£¬Ê¹¡ÏCPN=90¶È£®Æä×ø±êÊÇ(
£¬
)»ò£¨2£¬2£©£®
¡àOD=2£¬
¡àOD=OC£®
ÓÖ¡ßOPÊÇ¡ÏCODµÄ½Çƽ·ÖÏߣ¬
¡à¡ÏPOC=¡ÏPOD=45¡ã£¬
¡à¡÷POC¡Õ¡÷POD£¬
¡àPC=PD£®
£¨2£©¹ýµãB×÷¡ÏAOCµÄƽ·ÖÏߵĴ¹Ïߣ¬´¹×ãΪP£¬µãP¼´ÎªËùÇó£®
Ò×ÖªµãFµÄ×ø±êΪ£¨2£¬2£©£¬¹ÊBF=2£¬×÷PM¡ÍBF£¬
¡ß¡÷PBFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àPM=
1 |
2 |
¡àµãPµÄ×ø±êΪ£¨3£¬3£©£®
¡ßÅ×ÎïÏß¾¹ýԵ㣬
¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx£®
ÓÖ¡ßÅ×ÎïÏß¾¹ýµãP£¨3£¬3£©ºÍµãD£¨2£¬0£©£¬
¡àÓÐ
|
½âµÃ
|
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-2x£»
£¨3£©ÓɵÈÑüÖ±½ÇÈý½ÇÐεĶԳÆÐÔÖªDµã¹ØÓÚ¡ÏAOCµÄƽ·ÖÏߵĶԳƵ㼴ΪCµã£®
Á¬½ÓEC£¬ËüÓë¡ÏAOCµÄƽ·ÖÏߵĽ»µã¼´ÎªËùÇóµÄPµã£¨ÒòΪPE+PD=EC£¬¶øÁ½µãÖ®¼äÏ߶Î×î¶Ì£©£¬´Ëʱ¡÷PEDµÄÖܳ¤×îС£®
¡ßÅ×ÎïÏßy=x2-2xµÄ¶¥µãEµÄ×ø±ê£¨1£¬-1£©£¬CµãµÄ×ø±ê£¨0£¬2£©£¬
ÉèCEËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬
ÔòÓÐ
|
½âµÃ
|
¡àCEËùÔÚÖ±ÏߵĽâÎöʽΪy=-3x+2£®
µãPÂú×ã
|
½âµÃ
|
¹ÊµãPµÄ×ø±êΪ(
1 |
2 |
1 |
2 |
¡÷PEDµÄÖܳ¤¼´ÊÇCE+DE=
10 |
2 |
£¨4£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄPµã£®¾ØÐεĶԳÆÖÐÐÄΪ¶Ô½ÇÏߵĽ»µã£¬¹ÊN£¨2£¬1£©£®
¢Ùµ±PµãÔÚNµãÉÏ·½Ê±£¬ÓÉ£¨2£©ÖªF£¨2£¬2£©£¬ÇÒ¡ÏNFC=90¡ã£¬ÏÔÈ»Fµã·ûºÏPµãµÄÒªÇ󣬹ÊP£¨2£¬2£©£»
¢Úµ±PµãÔÚNµãÏ·½Ê±£¬ÉèP£¨a£¬a£©£¬Ôò£º¡ßC£¨0£¬2£©£¬N£¨2£¬1£©£¬¡àÓɹ´¹É¶¨ÀíµÃ£¬CP2+PN2=CN2£¬¼´a2+£¨a-2£©2+£¨2-a£©2+£¨1-a£©2=5£¬¼´4a2-10a+4=0£¬½âµÃa=
1 |
2 |
1 |
2 |
1 |
2 |
×ÛÉÏ¿ÉÖª£º´æÔÚµãP£¬Ê¹¡ÏCPN=90¶È£®Æä×ø±êÊÇ(
1 |
2 |
1 |
2 |
µãÆÀ£ºº¯ÊýÓëËıßÐλòÈý½ÇÐεÄ×ۺϿ¼²é£¬Êǽü¼¸ÄêÖп¼µÄÒ»¸öÈȵãÎÊÌ⣮¶ÔÓÚÕâÀàÎÊÌ⣬ͨ³£ÐèҪѧÉúÊìϤÕÆÎÕ¶à±ßÐÎÓ뺯ÊýµÄ¸ÅÄîÓëÐÔÖʼ°Á½ÕßÖ®¼äµÄÁªÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿