题目内容
已知一组正数x1,x2,x3,x4,x5的方差S2=
(
+
+
+
+
-20),则关于数据x1+2,x2+2,x3+2,x4+2,x5+2的说法:(1)方差为S2;(2)平均数为2;(3)平均数为4;(4)方差为4S2,其中正确的说法是( )
| 1 |
| 5 |
| x | 21 |
| x | 22 |
| x | 23 |
| x | 24 |
| x | 25 |
| A.(1)与(2) | B.(1)与(3) | C.(2)与(3) | D.(3)与(4) |
由方差的计算公式可得:S12=
[(x1-
)2+(x2-
)2+…+(xn-
)2]
=
[x12+x22+…+xn2-2(x1+x2+…+xn)•
+n
n2
]=
[x12+x22+…+xn2-2n
n2+n
n2]
=
[x12+x22+…+xn2]-
12
=
(x12+x22+x32+x42+x52-20),
可得平均数
1=2.
对于数据x1+2,x2+2,x3+2,x4+2,x5+2,有
2=2+2=4,
其方差S22=
[(x1-
)2+(x2-
)2+…+(xn-
)2]=S12.
故选B.
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
=
| 1 |
| n |
| . |
| x |
| . |
| x |
]=
| 1 |
| n |
| . |
| x |
| . |
| x |
=
| 1 |
| n |
| . |
| x |
=
| 1 |
| 5 |
可得平均数
| . |
| x |
对于数据x1+2,x2+2,x3+2,x4+2,x5+2,有
| . |
| x |
其方差S22=
| 1 |
| n |
| . |
| x |
| . |
| x |
| . |
| x |
故选B.
练习册系列答案
相关题目