题目内容
【题目】如图,正方形的边长为12,点、分别在、上,若,且,则______.
【答案】
【解析】
首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易证△GCF≌△ECF,利用勾股定理可得DF,求出AF,设BE=x,利用GF=EF,解得x,再利用勾股定理可得CE.
解:如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,,
∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,
∴∠GCF=45°,
在△GCF与△ECF中,,
∴△GCF≌△ECF(SAS),
∴GF=EF,
∵DF=,AB=AD=12,
∴AF=124=8,
设BE=x,则AE=12x,EF=GF=4+x,
在Rt△AEF中,由勾股定理得:(12x)2+82=(4+x)2,
解得:x=6,
∴BE=6,
∴CE=,
故答案为:.
练习册系列答案
相关题目