题目内容

如图,在△ABC中,∠ABC和∠ACB的平分线交于E点,过点E 作MN∥BC交于点M,交AC于N点,若BM+CN=8,则线段MN的长为
8
8
分析:由∠ABC、∠ACB的平分线相交于点E,∠MBE=∠EBC,∠ECN=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得结论.
解答:解:∵∠ABC、∠ACB的平分线相交于点E,
∴∠MBE=∠EBC,∠ECN=∠ECB,
∵MN∥BC,
∴∠EBC=∠MEB,∠NEC=∠ECB,
∴∠MBE=∠MEB,∠NEC=∠ECN,
∴BM=ME,EN=CN,
∴MN=ME+EN,
即MN=BM+CN.
∵BM+CN=8
∴MN=8,
故答案为:8.
点评:此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BME△CNE是等腰三角形
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网