题目内容
【题目】在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意,下面所列方程正确的是( )
A. (9-7)x=1 B. (9-7)x=1 C. (+)x=1 D. (-)x=1
【答案】C
【解析】把两地距离看为1,野鸭每天飞,大雁每天飞,根据相遇问题的路程关系可列出方程.
把两地距离看为1,野鸭每天飞,大雁每天飞,
设经过x天相遇,根据题意,得
(+)x=1
故选:C
练习册系列答案
相关题目
【题目】(2016·天津)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台,租车费用为400元,每辆乙种货车一次最多运送机器30台,租车费用为280元.
(1)设租用甲种货车x辆(x为非负整数),试填写表格:
表一:
租用甲种货车的数量 / 辆 | 3 | 7 | x |
租用的甲种货车最多运送机器的数量 / 台 | 135 | ||
租用的乙种货车最多运送机器的数量 / 台 | 150 |
表二:
租用甲种货车的数量 / 辆 | 3 | 7 | x |
租用甲种货车的费用/ 元 | 2800 | ||
租用乙种货车的费用 / 元 | 280 |
(2)若租用甲种货车x辆时,设两种货车的总费用为y元,试确定能完成此项运送任务的最节省费用的租车方案.