题目内容
附加题阅读、理解和探索(1)观察下列各式:①
1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
(2)利用(1)中的规律,计算:
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
9×10 |
(3)应用以上规律化简:
1 |
n(n+1) |
1 |
(n+1)(n+2) |
1 |
(n+2)(n+3) |
1 |
(n+2008)(n+2009) |
(4)观察按规律排列一组数:
1 |
3 |
1 |
15 |
1 |
35 |
1 |
3 |
1 |
15 |
1 |
35 |
分析:根据题中所给的式子分析可得出结果.注意分母之间的关系.即
=
-
1 |
n×(n+1) |
1 |
n |
1 |
n+1 |
解答:解:根据以上分析故(1)第④个式子是
=
-
,第n个式子是
=
-
.
(2)解:
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
(3)解:原式=
-
+
-
+…+
-
=
-
=
(4)把第n项填入括号:
+
+
+…+(
)可得原式=
(1-
)+
(
-
)+
(
-
)+
(
-
)
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)=
×
=
1 |
4×5 |
1 |
4 |
1 |
5 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
(2)解:
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
9×10 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
9 |
1 |
10 |
1 |
10 |
9 |
10 |
(3)解:原式=
1 |
n |
1 |
n+1 |
1 |
n+1 |
1 |
n+2 |
1 |
n+2008 |
1 |
n+2009 |
1 |
n |
1 |
n+2009 |
2009 |
n(n+2009) |
(4)把第n项填入括号:
1 |
3 |
1 |
15 |
1 |
35 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
3 |
1 |
5 |
1 |
2 |
1 |
5 |
1 |
7 |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
1 |
2 |
2n |
2n+1 |
n |
2n+1 |
点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
练习册系列答案
相关题目