题目内容
【题目】如图,已知点E、F在四边形ABCD的对角线BD所在的直线上,且BE=DF,AE∥CF,请再添加一个条件(不要在图中再增加其它线段和字母),能证明四边形ABCD是平行四边形,并证明你的想法.
你所添加的条件:____________________________________;
证明:
【答案】AE=CF
【解析】
试题要证四边形ABCD是平行四边形,只要得出一组对边(AB和CD)平行且相等即可,即只要添加一个条件使得△ABE≌△CDF,由已知可得两三角形全等的条件有∠E=∠F,BE=DF,故可添加AE=CF(答案不唯一),利用SAS证明△ABE≌△CDF.
试题解析:答案不唯一,例如:添加AE=CF.
证明如下:
∵AE∥CF,
∴∠E=∠F,
又BE=DF,AE=CF,
∴△ABE≌△CDF(SAS),
∴AB=CD,∠ABE=∠CDF,
∴∠ABD=∠CDB,
∴AB∥CD,
∴四边形ABCD是平行四边形.
练习册系列答案
相关题目