题目内容
【题目】在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm
(1)求这个三角形的斜边AB的长和斜边上的高CD的长.
(2)求斜边被分成的两部分AD和BD的长.
【答案】(1)1.68cm;(2)2.24cm
【解析】试题分析:(1)根据勾股定理求得该直角三角形的斜边,根据直角三角形的面积,求得斜边上的高等于斜边的乘积÷斜边;
(2)在(1)的基础上根据勾股定理进行求解.
(1)∵△ABC中,∠C=90°,AC="2.1" cm,BC="2.8" cm
∴AB2=AC2+BC2=2.12+2.82=12.25
∴AB="3.5" cm
∵S△ABC=AC·BC=AB·CD
∴AC·BC=AB·CD
∴CD===1.68(cm)
(2)在Rt△ACD中,由勾股定理得:
AD2+CD2=AC2
∴AD2=AC2-CD2=2.12-1.682
=(2.1+1.68)(2.1-1.68)
="3.78×0." 42=2×1.89×2×0.21
=22×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm)
∴BD=AB-AD=3.5-1.26=2.24(cm).
练习册系列答案
相关题目