题目内容

【题目】如图,在ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.
求证:
(1)∠1=∠2;
(2)DG=B′G.

【答案】
(1)证明:∵在平行四边形ABCD中,DC∥AB,

∴∠2=∠FEC,

由折叠得:∠1=∠FEC,

∴∠1=∠2


(2)证明:∵∠1=∠2,

∴EG=GF,

∵AB∥DC,

∴∠DEG=∠EGF,

由折叠得:EC′∥B′F,

∴∠B′FG=∠EGF,

∵DE=BF=B′F,

∴DE=B′F,

∴△DEG≌△B′FG(SAS),

∴DG=B′G.


【解析】(1)根据平行四边形得出DC∥AB,推出∠2=∠FEC,由折叠得出∠1=∠FEC=∠2,即可得出答案;(2)求出EG=B′G,推出∠DEG=∠EGF,由折叠求出∠B′FG=∠EGF,求出DE=B′F,证△DEG≌△B′FG即可.

练习册系列答案
相关题目

【题目】n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?

(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有Pn种.

探究一用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?

如图,图,显然,只有2种不同的分割方案.所以,P4=2.

探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?

不妨把分割方案分成三类:

1类:如图③,用A,EB连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

2类:如图④,用A,EC连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.

3图⑤,用A,ED连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

所以,P5 =++=()

探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?

不妨把分割方案分成四类:

1类:如图⑥,用A,FB连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.

2类:如图⑦,用A,FC连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案

3类:如图⑧,用A,FD连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.

4类:如图⑨,用A,FE连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.

所以,P6 =()

探究四:用七边形的对角线把七边形分割成5个三角形,则P7P6的关系为:

P7 = ,共有_____种不同的分割方案.……

(结论)用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出PnPn -1的关系式,不写解答过程).

(应用)用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案? (应用上述结论,写出解答过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网