题目内容

已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).
(1)求此抛物线的函数表达式;
(2)如果点是抛物线上的一点,求△ABD的面积.

(1)抛物线的解析式为y=﹣(x﹣1)(x+3)(或y=﹣x2﹣2x+3);(2)△ABD的面积是

解析试题分析:(1)根据题意可以设抛物线解析式为y=a(x﹣1)(x+3)(a≠0),然后把点C的坐标代入,即可求得a的值;
(2)根据三角形的面积公式进行求解.
试题解析:(1)∵抛物线与x轴相交于两点A(1,0),B(﹣3,0),
∴设抛物线解析式为y=a≠0).
∵抛物线与y轴相交于点C(0,3),
∴3=a(0﹣1)(0+3),
解得a=﹣1,
则抛物线的解析式为y=﹣(x﹣1)(x+3)(或y=﹣x2﹣2x+3);
(2)∵A(1,0),B(﹣3,0),
∴AB=4.
又∵是抛物线上的一点,
∴m=﹣(﹣1)(+3)=﹣,
则△ABD的面积为:AB•|m|=×4×=
答:△ABD的面积是
考点:待定系数法求二次函数解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网