题目内容
【题目】如图,为线段上一动点(不与点、重合),在同侧分别作等边和等边,与交于点,与交于点,与交于点,连接、,以下五个结论:①;②;③;④;⑤平分.一定成立的结论有______________;
【答案】①②③⑤.
【解析】
①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;
③根据②△CQB≌△CPA(ASA),可知③正确;
④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;
⑤由BC∥DE,得到∠CBE=∠BED,由∠CBE=∠DAE,得到∠AOB=∠OAE+∠AEO=60°可得出∠AOE=120°,再利用三角形相似以及等边三角形的知识可知⑤正确;
解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD与△BCE中,,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴①正确;
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE
∴②正确;
∵△CQB≌△CPA,
∴AP=BQ
∴③正确;
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,
∵∠PBO=∠PAC,∠BOP=∠PCA,
∴△BPO∽△APC,
∴ ,
∴,
∵∠APB=∠CPO,
∴△APB∽△CPO,
∴∠COP=∠ABP=60°,
∴∠COA=∠COE=60°,
∴OC平分∠AOE,故⑤正确;
故答案为:①②③⑤.