题目内容
【题目】在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.
(1)依题意补全图1;
(2)若∠PAB=20°,求∠ADF的度数;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.
【答案】(1)见解析;(2)25°;(3)EF2+FD2=2AB2,见解析
【解析】
(1)根据题意直接画出图形得出即可;
(2)利用对称的性质以及等角对等边进而得出答案;
(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.
解:(1)如图1所示:
(2)如图2,连接AE,
则∠PAB=∠PAE=20°,AE=AB=AD,
∵四边形ABCD是正方形,
∴∠BAD=90°,
又∵∠EAP=∠BAP=20°,
∴∠EAD=130°,
∴;
(3)数量关系是; EF2+FD2=2AB2
如图3,连接AE、BF、BD,
由轴对称的性质和正方形的性质可得:
EF=BF,AE=AB=AD,
∠ABF=∠AEF=∠ADF,
∴∠BFD=∠BAD=90°,
∴BF2+FD2=BD2,
∵在Rt△ABD中AD2+AB2=BD2
∴EF2+FD2=2AB2.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣ | 3 | 3 |
下列结论:
(1)abc<0;
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0;
(4)抛物线与坐标轴有两个交点;
(5)x=3是方程ax2+(b﹣1)x+c=0的一个根;
其中正确的个数为( )
A.5个B.4个C.3个D.2个