题目内容
【题目】在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,线段BE的长为____________.
【答案】.
【解析】由∠CAB=∠CAD=22.5°可得∠DAE=45°,DE⊥AB,所以DE=AE=1.根据勾股定理可求得AD=6,由∠CAB=∠CAD=22.5°,再根据角的平分线上的点到角的两边的距离相等,可证得BC=CF,然后证得△CBG≌△CFD,再证得△CGE≌△CED,求得∠3=∠4=45°,从而求得CE=AE=1,在△CBE中根据勾股定理求得BE的长.
∵∠CAB=∠CAD=22.5°,
∴∠DAE=45°,
又∵∠AED=90°,
∴DE=AE=1,
∴AD=.
延长AD,过点C作CF垂直AD于F,
由∠CAB=∠CAD可知AC为∠BAD的角平分线,
∴CB=CF,
把三角形CDF绕点C旋转到CF与CB重合,则DF与GB重合,如图:
.
∴CG=CD,∠GCB=∠DCF;
∵CB⊥AB,CF⊥AD,∠CAB=∠CAD=22.5°;
∴∠ACB=∠ACF=67.5°=∠DCE
∴∠DCA=∠2=∠3,∠DCA+∠DCF=∠2+∠GCB=∠DCE=67.5°,
在△DCE与△GCE中
,
∴△DCE≌△GCE(SAS),
∴∠3=∠4=45°,
∵∠CAB=∠CAD=22.5°,∠4=∠CAB+∠ACE,
∴∠ACE=∠CAB=22.5°,
∴CE=AE=1,
在Rt△CBE中,BE2+BC2=CE2,
即BE=.
故答案为:.
练习册系列答案
相关题目