题目内容

【题目】如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,POABC,过点B作直径BD,连接AD、BM、AP.

(1)求证:PMAD;

(2)若∠BAP=2M,求证:PA是⊙O的切线;

(3)若AD=6,tanM=,求⊙O的直径.

【答案】(1)证明见解析;(2)证明见解析;(3)5;

【解析】

(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=BAP+OAB=BOC+OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.5x,OM=MN=1.25x,OC=0.75x,根据三角形的中位线性质得出0.75x=AD=3,求出x即可.

(1)BD是直径,

∴∠DAB=90°,

POAB,

∴∠DAB=MCB=90°,

PMAD;

(2)连接OA,

OB=OM,

∴∠M=OBM,

∴∠BON=2M,

∵∠BAP=2M,

∴∠BON=BAP,

POAB,

∴∠ACO=90°,

∴∠AON+OAC=90°,

OA=OB,

∴∠BON=AON,

∴∠BAP=AON,

∴∠BAP+OAC=90°,

∴∠OAP=90°,

OA是半径,

PA是⊙O的切线;

(3)连接BN,

则∠MBN=90°.

tanM=

=

BC=x,CM=2x,

MN是⊙O直径,NMAB,

∴∠MBN=BCN=BCM=90°,

∴∠NBC=M=90°﹣BNC,

∴△MBC∽△BNC,

BC2=NC×MC,

NC=x,

MN=2x+x=2.5x,

OM=MN=1.25x,

OC=2x﹣1.25x=0.75x,

OBD的中点,CAB的中点,AD=6,

OC=0.75x=AD=3,

解得:x=4,

MO=1.25x=1.25×4=5,

∴⊙O的半径为5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网