题目内容
【题目】定义:如图1,抛物线 与 轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足 ,则称点P为抛物线 的勾股点。
(1)直接写出抛物线 的勾股点的坐标;
(2)如图2,已知抛物线C: 与 轴交于A,B两点,点P(1, )是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件 的点Q(异于点P)的坐标
【答案】
(1)
解:勾股点的坐标为(0,1)
(2)
解:抛物线y=ax2+bx(a≠0)过原点(0,0),即A(0,0),
如图作PG⊥x轴于点G,连接PA,PB,
∵点P(1,),
∴ AG=1,PG=,
∴PA=2,tan∠PAB=,
∴∠PAB=60°,
∴在Rt△PAB中,AB==4,
∴点B(4,0),
设y=ax(x-4),当x=1时,y=,
解得a=-,
∴y=-x(x-4)=-x2+x.
(3)
解:① 当点Q在x轴上方,由S△ABQ=S△ABP,易知点Q的纵坐标为,
∴-x2+x=,解得x1=3,x2=1(不合题意,舍去),
∴Q(3,),
②当点Q在x轴下方,由S△ABQ=S△ABP,易知点Q的纵坐标为-,
∴-x2+x=-,解得x1=2+,x2=2-,
∴Q(2+,-)Q(2-,-),
综上,满足条件的点Q有三个:Q(3,)Q(2+,-)Q(2-,-).
【解析】(1)解:y=-x2+1与x轴交于A(-1,0),B(1,0),与y轴交于P(0,1),
∴AB=2,AP=BP=,
∴AP2+BP2=AB2
∴勾股点P(0,1),
练习册系列答案
相关题目