题目内容
【题目】(1)(阅读与证明)
如图1,在正的外角内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.
①完成证明:点E是点C关于的对称点,
,,.
正中,,,
,得.
在中,,______.
在中,,______.
②求证:.
(2)(类比与探究)
把(1)中的“正”改为“正方形”,其余条件不变,如图2.类比探究,可得:
①______;
②线段、、之间存在数量关系___________.
(3)(归纳与拓展)
如图3,点A在射线上,,,在内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.则线段、、之间的数量关系为__________.
【答案】(1)①60°,30°;②证明见解析;(2)①45°;②BF=(AF+FG);(3) .
【解析】
(1)①根据等量代换和直角三角形的性质即可确定答案;②在FB上取AN=AF,连接AN.先证明△AFN是等边三角形,得到 ∠BAN=∠2=∠1,然后再证明△ABN≌△AEF,然后利用全等三角形的性质以及线段的和差即可证明;
(2)类比(1)的方法即可作答;
(3)根据(1)(2)的结论,即可总结出答案.
解:(1)①∵,,
∴,即60°;
∵
∴
故答案为60°,30°;
②在FB上取FN=AF,连接AN
∵∠AFN=∠EFG=60°
∴△AFN是等边三角形
∴AF=FN=AN
∵FN=AF
∴∠BAC=∠NAF=60°
∴∠BAN+∠NAC=∠NAC+∠2
∴∠BAN=∠2
∵点C关于的对称点E
∴∠2=∠1,AC=AE
∴∠BAN=∠2=∠1
∵AB=AC
∴AB=AE
在△ABN和△AEF
FN=AF,∠BAN=∠1,AB=AE
∴△ABN≌△AEF
∴BN=EF
∵AG⊥CE,∠FEG=30°
∴EF=2FG
∴BN=EF=2FG
∵BF=BN+NF
∴BF=2FG+AF
(2)①点E是点C关于的对称点,
,,.
正方形ABCD中,,,
,得.
在中,,
45.
在中,,
45.
故答案为45°;
②在FB上取FN=AF,连接AN
∵∠AFN=∠EFG=45°
∴△AFN是等腰直角三角形
∴∠NAF=90°,AF=AN
∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF
∴∠BAN=∠2
∵点C关于的对称点E
∴∠2=∠1,AC=AE
∴∠BAN=∠2=∠1
∵AB=AC
∴AB=AE
在△ABN和△AEF
FN=AF,∠BAN=∠1,AB=AE
∴△ABN≌△AEF
∴BN=EF
∵AG⊥CE,∠FEG=45°
∴EF=FG
∴BN=EF=FG
∵BF=BN+NF
∴BF=FG+AF
(3)由(1)得:当∠BAC=60°时
BF=AF+2FG= ;
由(2)得:当∠BAC=90°时
BF=AF+2FG=;
以此类推,当当∠BAC= 60°时, .
【题目】为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:
7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:
年级 | 平均数 | 众数 | 中位数 | 8分及以上人数所占百分比 |
七年级 | 7.5 | a | 7 | 45% |
八年级 | 7.5 | 8 | b | c |
八年级20名学生的测试成绩条形统计图如图:
根据以上信息,解答下列问题:
(1)直接写出上述表中的a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?