题目内容

【题目】已知:如图,⊙O是△ABC的内切圆,下列说法错误的是(  )
A.点O在△ABC的三边垂直平分线上
B.点O在△ABC的三个内角平分线上
C.如果△ABC的面积为S,三边长为a,b,c,⊙O的半径为r,那么r=
D.如果△ABC的三边长分别为5,7,8,那么以A、B、C为端点三条切线长分别为5,3,2

【答案】A
【解析】解:∵⊙O是△ABC的内切圆,
∴点O到△ABC三边的距离相等,
∴点O在△ABC的三个内角平分线上,故A错误,B正确,
连接OA,OB,OC,
∴S=S△ABO+S△BCO+S△ACO=cr+arbr=(a+b+c)r,
∴r= , 故C正确,
设以A、B、C为端点三条切线长分别为:x,y,z,

解得:
故D正确,
故选A.

【考点精析】认真审题,首先需要了解三角形的内切圆与内心(三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网