题目内容
【题目】在绿化某县城与高速公路的连接路段中,需购买罗汉松、雪松两种树苗共400株,罗汉松树苗每株60元,雪松树苗每株70元.相关资料表明:罗汉松、雪松树苗的成活率分别为70%,90%.
(1)若购买这两种树苗共用去26500元,则罗汉松、雪松树苗各购买多少株?
(2)绿化工程来年一般都要将死树补上新苗,现要使该两种树苗来年共补苗不多于80株,则罗汉松树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,才能使购买树苗的费用最低?请求出最低费用.
【答案】(1)购买罗汉松树苗150株,雪松树苗250株;(2)罗汉松树苗至多购买200株;(3)选购罗汉松树苗200株,雪松树苗200株时,总费用最低,为26000元
【解析】
设购买罗汉松树苗x株,雪松树苗y株,
(1)根据两种树苗的株数和费用列出二元一次方程组,然后求解即可;
(2)根据罗汉松树苗的株数表示出雪松树苗为(400-x)株,然后根据成活的两种树苗数列出不等式,求解即可;
(3)表示出两种树苗的费用数,然后根据一次函数的增减性求出费用最小值即可.
(1)设购买罗汉松树苗株,雪松树苗y株,则
,
解得:,
答:购买罗汉松树苗150株,雪松树苗250株;
(2) 设购买罗汉松树苗株,则购买雪松树苗株,
由题意得,,
解得,
答:罗汉松树苗至多购买200株;
(3)设罗汉松树苗购买株,购买树苗的费用为元,
则有,
显然是关于的一次函数,
∵,
∴随的增大而减小,
故当取最大值时,最小,
∵,
∴当时,取得最小值,且最小.
答:当选购罗汉松树苗200株,雪松树苗200株时,总费用最低,为26000元.
【题目】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
进价(元/台) | 售价(元/台) | |
电饭煲 | 200 | 250 |
电压锅 | 160 | 200 |
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的 ,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?