题目内容

已知:点P(a+1,a-1)关于x轴的对称点在反比例函数y=-
8
x
(x>0)的图象上,y关于x的函数y=k2x2-(2k+1)x+1的图象与坐标轴只有两个不同的交点A﹑B,求P点坐标和△PAB的面积.
(1)∵P点关于x轴的对称点为(a+1,-a+1),它在y=-
8
x
(x>0)图象上,且在第四象限
∴(a+1)(-a+1)=-8,即a2=9
∴a=3(a=-3舍去)
∴P(4,2)(2分)

(2)当k=0时,y=-x+1,
设一次函数图象与x轴交于A,与y轴交于B,则A(1,0),B(0,1)
此时,S△PAB=
1
2
×(1+2)×4-
1
2
×1×1-
1
2
×3×2=
5
2
(4分)
当k≠0时,函数y=k2x2-(2k+1)x+1的图象为抛物线,与y轴交于B(0,1)
∵它的图象与坐标轴只有两个交点
∴它的图象与x轴只有一个交点,设为A点
∴△=(2k+1)2-4k2=0
解得:k=-
1
4
(5分)
∴抛物线y=
1
16
x2-
1
2
x+1=
1
16
(x-4)2
与x轴交于A(4,0)
∴此时,S△PAB=
1
2
×2×4=4

综合得:△PAB的面积为
5
2
或4.(7分)
练习册系列答案
相关题目
进入三月以来,重庆的气温渐渐升高,羽绒服进入了销售淡季.为此重庆某百货公司对某品牌的A款羽绒服进行了清仓大处理.已知A款羽绒服的销售价格y元与第x天(1≤x≤10,且为整数)之间的关系可用如下表表示:
时间(x天)12345678910
售价y(元/件)550500450400350300300300300300
在销售的前6天,A款羽绒服的销售数量z1(件)与第x天的关系式为z1=20x+40(1≤x≤6且为整数);后4天(7≤x≤10,且为整数)的销售数量z2件与第x天的关系如图所示
(1)请观察题中表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z2与x之间的一次函数关系式.
(2)若A款羽绒服的进价为每件200元,该专柜共有5个员工,每位员工每天的工资为100元,该专柜每天所需的固定支出为1000元,请结合上述信息,求这10天内哪天的利润最大,并求出这个最大利润.
(3)在第(2)问的前提下,为了提高收益、减少库存,商场在第11天作出以下决定:第11-15天继续维持A款羽绒服的售价,结果每天的销售量均与第10天的持平,同时在第11-15天将B款羽绒服也作为促销商品,而且作为销售重点,已知B款羽绒服的进价仍为200元每件,销售价格比A款羽绒服取得最大利润当天的售价降低了a%,而每天销售量则比第10天A款羽绒服的销量提高了2a%,最后5天A、B两款羽绒服的总利润为27100元,请你参考以下数据,计算出a的值.
参考数据:2.52=6.25,2.62=6.76,2.72=7.29,2.82=7.84.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网