题目内容

如图,在⊙O中,弦CD垂直于直径AB于点F,OF=3,CD=8,M是OC的中点,AM的延长线交⊙O于点E,DE与BC交于点N,(1)求AB的长;(2)求证:BN=CN.
(1)10 (2)证明CN=,所以CN=BN

试题分析:(1)AB是⊙O直径,AB⊥CD,CD=8
∴ CF=4                             
在Rt△OCF中,根据勾股定理,得
OC2=OF2+CF2                                  
=32+42
=25
∴OC=5                                      
∴AB=2OC=2×5=10                    
(2)连结AC,BD

∵弦CD垂直于直径AB,
∴BC=BD.
∴∠BCD=∠BDC   
∵OA=OC,                                                          
∴∠OCA=∠OAC.                                                                    
∵∠BDC=∠OAC,                                                                    
∴∠BCD=∠OCA.                                                                        
∴△BCD∽△OCA                                                                          
                                                                       
在△CDN和△CAM中,                                                                    
∵∠DCN=∠ACM,∠CDN=∠CAM,                                                       
∴△CDN∽△CAM                                                                          

  

即BN=CN.  
点评:本题考查勾股定理,相似三角形,解答本题的关键是掌握勾股定理的内容,熟悉相似三角形的判定方法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网