题目内容
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第2017次运动后,动点P的坐标是______,经过第2018次运动后,动点P的坐标是______.
【答案】
【解析】
观察前几次运动后点的坐标,不难发现动点P的横坐标等于运动的次数,而纵坐标的变化为1,0,2,0,1,0,2,0…,4个一循环;
接下来通过总结得到的规律,再结合2017÷4=504……1,即可求出经过2017次运动后动点P的坐标了,同理可找到2018次运动后动点P的坐标.
根据动点P在平面直角坐标系中按图中箭头所示方向运动,
第1次从原点运动到点(1,1),
第2次接着运动到点(2,0),
第3次接着运动到点(3,2),
第4次接着运动到点(4,0),
第5次接着运动到点(5,1),
…
∴横坐标为运动次数,经过第2017次运动后,动点P的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,
∴经过第2017次运动后,动点P的纵坐标为:2017÷4=504……1,故纵坐标为四个数中第一个,即1,
∴经过第2017次运动后,动点P的坐标是(2017,1).
∵2018÷4=504……2,
∴经过第2018次运动后,动点P的坐标是(2018,0).
故答案为: , .
【题目】课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.
等级 | 人数/名 |
优秀 | a |
良好 | b |
及格 | 150 |
不及格 | 50 |
解答下列问题:
(1)a等于多少?,b等于多少?
(2)补全条形统计图;
(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.
【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.