题目内容
【题目】分解因式:a2+2a=_________.
【答案】a(a+2)
【解析】试题分析: a2+2a=a(a+2).
【题目】在同圆中,下列四个命题:(1)圆心角是顶点在圆心的角;(2)两个圆心角相等, 它们所对的弦也相等;(3)两条弦相等,它们所对的弧也相等;(4)等弧所对的圆心角相等.其中真命题有( )
A. 4个 B. 3个 C. 2个 D. 1个
【题目】已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角形的顶点P放在斜边AC上.
(1)设三角板的两直角边分别交边AB,BC于点M,N.
①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;
②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.
(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB,BC于点M,N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB,BC的延长线于点M,N.
①请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;
②在①的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是 .
【题目】完成下面推理过程:
已知:如图,已知∠1 =∠2,∠B =∠C,
求证:AB∥CD.
证明∵∠1 =∠2(已知),
且∠1 =∠CGD( ),
∴∠2 =∠CGD(等量代换).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代换).
∴AB∥CD( ).
【题目】下列所述物体中,与球的形状最类似的是( )
A. 电视机 B. 铅笔
C. 西瓜 D. 烟囱冒
【题目】从分别标有1,2,3,…,50的50张卡片中抽出2的倍数的卡片的可能性________抽出4的倍数的卡片的可能性(填“大于”“小于”或“等于”).
【题目】﹣[x﹣(y﹣z)]去括号后应得( )A.﹣x+y﹣zB.﹣x﹣y+zC.﹣x﹣y﹣zD.﹣x+y+z
【题目】如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC 分别相切于E,F两点.
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.
【题目】矩形具有而平行四边形不一定具有的性质是( )
A. 对角线互相垂直 B. 对角线相等 C. 对角线互相平分 D. 对角相等