题目内容
如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.
【答案】分析:(1)连接OE,并延长EO交⊙O于N,连接DN;由于ME是⊙O的切线,则∠MEG=∠N,而∠MGE=∠AGF,易证得∠AGF=∠B,即∠MGE=∠B,若证ME=MG,关键就是证得∠N=∠B;可从题干入手:点D是弧ABC的中点,则弧AD=弧DBC=弧AE,所以弧DBE=弧AEC,即AC=DE,由此可证得∠N=∠B,即可得到∠MGE=∠MEG,根据等角对等边即可得证.
(2)根据相交弦定理可求得DF、EF的长,即可得到DE、AC的长,易证得△AFG∽△ACB,根据所得比例线段即可求得AG、GC的长,再由(1)证得ME=MG,可用MG分别表示出MA、MC的长,进而根据切割线定理求出MG的长,有了AG、MG的值,那么它们的比例关系就不难求出.
解答:解:(1)ME=MG成立,理由如下:
如图,连接EO,并延长交⊙O于N,连接BC;
∵AB是⊙O的直径,且AB⊥DE,
∴,
∵点D是的中点,
∴,
∴,
∴,即AC=DE,∠N=∠B;
∵ME是⊙O的切线,
∴∠MEG=∠N=∠B,
又∵∠B=90°-∠GAF=∠AGF=∠MGE,
∴∠MEG=∠MGE,故ME=MG.
(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;
故DE=AC=2DF=4;
∵∠FAG=∠CAB,∠AFG=∠ACB=90°,
∴△AFG∽△ACB,
∴,即,
解得AG=,GC=AC-AG=;
设ME=MG=x,则MC=x-,MA=x+,
由切割线定理得:ME2=MC•MA,即x2=(x-)(x+),
解得MG=x=;
∴AG:MG=:=10:3,即AG与GM的比为.
点评:此题是一道圆的综合题,涉及到:切线的性质、圆周角定理、相交弦定理、弦切角定理、切割线定理等重要知识点,综合性强,难度较大,能够发现AC、DE的等量关系是解答此题的关键所在.
(2)根据相交弦定理可求得DF、EF的长,即可得到DE、AC的长,易证得△AFG∽△ACB,根据所得比例线段即可求得AG、GC的长,再由(1)证得ME=MG,可用MG分别表示出MA、MC的长,进而根据切割线定理求出MG的长,有了AG、MG的值,那么它们的比例关系就不难求出.
解答:解:(1)ME=MG成立,理由如下:
如图,连接EO,并延长交⊙O于N,连接BC;
∵AB是⊙O的直径,且AB⊥DE,
∴,
∵点D是的中点,
∴,
∴,
∴,即AC=DE,∠N=∠B;
∵ME是⊙O的切线,
∴∠MEG=∠N=∠B,
又∵∠B=90°-∠GAF=∠AGF=∠MGE,
∴∠MEG=∠MGE,故ME=MG.
(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;
故DE=AC=2DF=4;
∵∠FAG=∠CAB,∠AFG=∠ACB=90°,
∴△AFG∽△ACB,
∴,即,
解得AG=,GC=AC-AG=;
设ME=MG=x,则MC=x-,MA=x+,
由切割线定理得:ME2=MC•MA,即x2=(x-)(x+),
解得MG=x=;
∴AG:MG=:=10:3,即AG与GM的比为.
点评:此题是一道圆的综合题,涉及到:切线的性质、圆周角定理、相交弦定理、弦切角定理、切割线定理等重要知识点,综合性强,难度较大,能够发现AC、DE的等量关系是解答此题的关键所在.
练习册系列答案
相关题目