题目内容
【题目】已知:如图,在△ABC中,点D、E分别在边BC、AC上,点F在DE的延长线上,AD=AF,AECE=DEEF.
(1)求证:△ADE∽△ACD;
(2)如果AEBD=EFAF,求证:AB=AC.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由AECE=DEEF,推出△AEF∽△DEC,可得∠F=∠C,再证明∠ADF=∠C,即可解决问题;
(2)欲证明AB=AC,利用相似三角形的性质证明∠B=∠C即可.
(1)∵AD=AF,
∴∠ADF=∠F,
∵AECE=DEEF,
∴,
又∵∠AEF=∠DEC,
∴△AEF∽△DEC,
∴∠F=∠C,
∴∠ADF=∠C,
又∵∠DAE=∠CAD,
∴△ADE∽△ACD.
(2)∵AEBD=EFAF,
∴,
∵AD=AF,
∴,
∵∠AEF=∠EAD+∠ADE,∠ADB=∠EAD+∠C,
∴∠AEF=∠ADB,
∴△AEF∽△ADB,
∴∠F=∠B,
∴∠C=∠B,
∴AB=AC.
练习册系列答案
相关题目