题目内容
【题目】如图,直线y=kx+4(k≠0)与x轴、y轴分别交于点B,A,直线y=-2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积是.
(1)求直线AB的表达式;
(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.
【答案】(1)直线AB的表达式为y=x+4;(2)当△ACE是直角三角形时,点E的坐标为(-3,1)或(-,).
【解析】
(1)将=0分别代入两个一次函数表达式中求出点A、C的坐标,进而即可得出AC的长度,再根据三角形的面积公式结合△ACD的面积即可求出点D的横坐标,利用一次函数图象上点的坐标特即可求出点D的坐标,由点D的坐标利用待定系数法即可求出直线AB的表达式;
(2)由直线AB的表达式即可得出△ACE为等腰直角三角形,分∠ACE=90和∠AEC=90两种情况考虑,根据点A、C的坐标利用等腰直角三角形的性质即可得出点E的坐标,此题得解.
(1)当x=0时,y=kx+4=4,y=-2x+1=1,
∴A(0,4),C(0,1),
∴AC=3.
∵S△ACD=AC·(-xD)=-xD=,
∴xD=-1.
当x=-1时,y=-2x+1=3,
∴D(-1,3).
将D(-1,3)代入y=kx+4,得-k+4=3,
解得k=1,
∴直线AB的表达式为y=x+4.
(2)∵直线AB的表达式为y=x+4,
∴△ACE为等腰直角三角形.
如图,当∠ACE=90°时,
∵A(0,4),C(0,1),AC=3,
∴CE1=3,E1的横坐标为-3.
将x=-3代入y=x+4中,得y=1,
∴E1(-3,1);
当∠AE2C=90°时,
∵A(0,4),C(0,1),AC=3,
过点E2作E2F⊥AC于点F,E2F=AF=FC=AC=,
∴E2(-,).
综上所述,当△ACE是直角三角形时,点E的坐标为(-3,1)或(-,).