题目内容

【题目】等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC为(
A.5
B.7
C.10
D.9

【答案】B
【解析】解:设AB的中点为D,
∵DG为AB的垂直平分线
∴GA=GB (垂直平分线上一点到线段两端点距离相等),
∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,
又∵三角形ABC是等腰三角形,且AB=AC,
∴AB+BC=17,
∴BC=17﹣AB=17﹣10=7.
故选B.
【考点精析】关于本题考查的线段垂直平分线的性质和等腰三角形的性质,需要了解垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;等腰三角形的两个底角相等(简称:等边对等角)才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网