题目内容
(2013•郴州)如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB=
20
20
°.分析:根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得:∠BOC=2∠BAC,在等腰三角形OBC中可求出∠OCB.
解答:解:∵⊙O是△ABC的外接圆,∠BAC=70°,
∴∠B0C=2∠BAC=2×70°=140°,
∵OC=OB(都是半径),
∴∠OCB=∠OBC=
(180°-∠BOC)=20°.
故答案为:20°.
∴∠B0C=2∠BAC=2×70°=140°,
∵OC=OB(都是半径),
∴∠OCB=∠OBC=
1 |
2 |
故答案为:20°.
点评:此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.
练习册系列答案
相关题目