题目内容
【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=4,求△OEC的面积.
【答案】(1)证明见解析;(2)4
【解析】
(1)根据有三个角是直角的四边形是矩形进行证明;
(2)作OF⊥BC于F,根据矩形的性质得出BF=FC,由三角形中位线定理求出OF的长,由角的平分线的定义与∠ADC=90°求出EC的长,最后根据三角形面积公式进行求解.
(1)证明:∵,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形;
(2)解:作OF⊥BC于F,∵四边形ABCD是矩形,
∴CD=AB=4,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF是△BDC的中位线,
∴OF=CD=2,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
∴在Rt△EDC中,EC=CD=4,
∴△OEC的面积.
练习册系列答案
相关题目
【题目】学校组织“校园诗词大会”,全校学生参加初赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了部分学生的成绩(满分100分),整理得到如下不完整的统计图表:
组别 | 成绩x分 | 频数(人数) | 频率 |
第1组 | 50≤x<60 | 6 | 0.12 |
第2组 | 60≤x<70 | 0.16 | |
第3组 | 70≤x<80 | 14 | a |
第4组 | 80≤x<90 | b | |
第5组 | 90≤x<100 | 10 |
请根据图表中所提供的信息回答下列问题:
(1)统计表中a= ,b= ;
(2)请将统计图表补充完整;
(3)根据调查结果,请估计该校1200名学生中,成绩不低于80分的人数.