题目内容
【题目】如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是( )
A.(3,-1)
B.(-1,-1)
C.(1,1)
D.(-2,-1)
【答案】D
【解析】A,∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,
当第四个点为(3,-1)时,
∴BO=AC1=2,
∵A,C1 , 两点纵坐标相等,
∴BO∥AC1 ,
∴四边形OAC1B是平行四边形;故此选项正确;
B,∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,
当第四个点为(-1,-1)时,
∴BO=AC2=2,
∵A,C2 , 两点纵坐标相等,
∴BO∥AC2 ,
∴四边形OC2AB是平行四边形;故此选项正确;
C,∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,
当第四个点为(1,1)时,
∴BO=AC1=2,
∵A,C1 , 两点纵坐标相等,
∴C3O=BC3=.
同理可得出AO=AB= .
进而得出C3O=BC3=AO=AB,∠OAB=90°,
∴四边形OABC3是正方形;故此选项正确;
D,∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,
当第四个点为(-1,-1)时,四边形OC2AB是平行四边形;
∴当第四个点为(-2,-1)时,四边形OC2AB不可能是平行四边形;
故此选项错误.
故选:D.
根据以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,根据平行四边形的判定分别对答案A,B,C,D进行分析即可得出符合要求的答案.
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:
转动转盘 的次数n | 100 | 150 | 200 | 500 | 800 | 1 000 |
落在“铅笔” 区域的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔” 区域的频率 |
(1)计算并完成表格.
(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?
(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?