题目内容
【题目】为调查某校学生一学期课外书的阅读量情况,从全校学生中随机抽取50名学生的阅读情况进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n,当0≤n<5时,该学生为一般读者;当5≤n<10时,该学生为良好读者;当n≥10时,该学生为优秀读者.
随机抽取的50名学生一学期阅读课外书的本数数据如下:
阅读本数n | 0 | 2 | 4 | 5 | 6 | 8 | 10 | 12 | 14 | 16 |
人数 | 1 | 1 | 2 | 3 | 12 | 11 | 5 | 8 | 5 | 2 |
根据以上数据回答下列问题:
(1)请你估计在全校学生中任意抽取一个学生,是良好读者的概率是多少?(直接写出结果)
(2)在样本中为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4本的概率.
【答案】(1);(2).
【解析】
试题分析:(1)由给出的数据可求出当5≤n<10时的人数,进而可求得良好读者的概率;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2人的课外书籍阅读本数都为4的情况,再利用概率公式即可求得答案.
解:
(1)∵5≤n<10时,学生的人数为3+12+11=26(人),
∴估计在全校学生中任意抽取一个学生,是良好读者的概率==;
(2)画树状图得:
∵共有12种等可能的结果,抽得2人的课外书籍阅读本数都为4的有2种情况,
∴抽得2人的课外书籍阅读本数都为4的概率为:=.
练习册系列答案
相关题目