题目内容
【题目】如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.
小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.
下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
AP/cm | 0 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PC/cm | 0 | 1.21 | 2.09 | 2.69 | m | 2.82 | 0 |
AC/cm | 0 | 0.87 | 1.57 | 2.20 | 2.83 | 3.61 | 6.00 |
①经测量m的值是 (保留一位小数).
②在AP,PC,AC的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
【答案】(1)①3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一);(2)见解析; (3)2.3或4.2
【解析】
(1)①根据题意AC的值分析得出PC的值接近于半径;
②由题意AP的长度是自变量,分析函数值即可;
(2)利用描点法画出函数图像即可;
(3)利用数形结合的思想解决问题即可.
解:(1)①AC=2.83可知PC接近于半径3.0;
②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一)
(2)如图(答案不唯一,和(1)问相对应);
(3)结合图像根据AP=PC以及AC=PC进行代入分析可得AP为2.3或4.2
练习册系列答案
相关题目