题目内容
【题目】已知:如图(1),在平面直角坐标系中,点A、点B分別在x轴、y轴的正半轴上,点C在第一象限,∠ACB=90°,AC=BC,点A坐标为(m,0),点C横坐标为n,且m2+n2﹣2m﹣8n+17=0.
(1)分別求出点A、点B、点C的坐标;
(2)如图(2),点D为边AB中点,以点D为顶点的直角∠EDF两边分别交边BC于E,交边AC于F,①求证:DE=DF;②求证:S四边形DECF=S△ABC;
(3)在坐标平面内有点G(点G不与点A重合),使得△BCG是以BC为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.
【答案】(1)点A(1,0),点B(0,7),点C(4,4);(2)①见解析;②见解析;(3)点G(-3,3)或(3,11)或(7,8)
【解析】
(1)由非负性可求m,n的值,由“AAS”可证△BCM≌△ACN,可得CM=CN=4=OM,AN=BM=3,即可求解;
(2)①由等腰直角三角形的性质可得BD=CD=AD,∠ABC=∠BAC=∠BCD=∠ACD=45°,AB⊥CD,由“AAS”可证△BDE≌△CDF,可得DE=DF;
②由全等三角形的性质可得S△BDE=S△CDF,即可得结论;
(3)分三种情况讨论,由等腰直角三角形的性质和全等三角形的性质可求解.
(1)如图(1),过点C作CM⊥OB,CN⊥OA,
∵m2+n2﹣2m﹣8n+17=0.
∴(m﹣1)2+(n﹣4)2=0,
∴m=1,n=4,
∴点A(1,0),CM=4,
∵CM⊥OB,CN⊥OA,∠AOB=90°,
∴四边形OMCN是矩形,
∴∠MCN=90°=∠ACB,CM=ON=4,CN=OM,
∴AN=3,∠MCN-∠MVA=∠ACB-∠MVA
∴∠BCM=∠ACN,
∵ AC=BC,∠BMC=∠ANC,
∴△BCM≌△ACN(AAS)
∴CM=CN=4=OM,AN=BM=3,
∴点B(0,7),点C(4,4);
(2)①如图(2),连接CD,
∵AC=BC,∠ACB=90°,点D为边AB中点,
∴BD=CD=AD,∠ABC=∠BAC=∠BCD=∠ACD=45°,AB⊥CD
∵∠EDF=90°=∠BDC,
∴∠EDF-∠EDC=∠BDC-∠EDC
∴∠BDE=∠CDF,
∵BD=CD,∠ABC=∠DCA,
∴△BDE≌△CDF(AAS)
∴DE=DF,
②∵△BDE≌△CDF,
∴S△BDE=S△CDF,
∴S△BDE+S△EDC=S△CDF+S△EDC,
∴S△BDC=S四边形EDFC,
∵AD=BD,
∴
∴S四边形DECF= S△ABC;
(3)如图(3),
若∠GBC=90°,BG=BC时,且点G在BC下方,过点G作GF⊥OB,过点C作CE⊥OB,
∵∠GBF+∠EBC=90°,∠GBF+∠BGF=90°,
∴∠EBC=∠BGF,
∵∠BEC=∠BFG=90°,BG=BC,
∴△BGF≌△CBE(AAS)
∴BF=CE=4,GF=BE,
∴OF=OB-BF=7-4=3,
∴点G(﹣3,3),
若 时,且点在BC上方,过点 作M⊥OB,过点C作CE⊥OB,
∵
∴ ,
∵
∴
∴BM=CE=4, ,
∴OM=OB+BM=7+4=11,
∴ ,
若 , 时,点在BC上方,过点 作N⊥EC,过点C作CE⊥OB,
∵
∴ ,
∵
∴
∴CN=BE=3, ,
∴EN=4+3=7,
∴点
综上所述:点G(﹣3,3)或G(3,11)或G(7,8)