ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏßy=kx2-2kx+9-k£¨kΪ³£Êý£¬k¡Ù0£©£¬ÇÒµ±x£¾0ʱ£¬y£¾1£®£¨1£©ÇóÅ×ÎïÏߵĶ¥µã×ø±ê£»
£¨2£©ÇókµÄÈ¡Öµ·¶Î§£»
£¨3£©¹ý¶¯µãP£¨0£¬n£©×÷Ö±Ïßl¡ÍyÖᣬµãOΪ×ø±êԵ㣮
¢Ùµ±Ö±ÏßlÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬Çón¹ØÓÚkµÄº¯Êý¹Øϵʽ£»
¢Úµ±Ö±ÏßlÓëÅ×ÎïÏßÏཻÓÚA¡¢BÁ½µãʱ£¬ÊÇ·ñ´æÔÚʵÊýn£¬Ê¹µÃ²»ÂÛkÔÚÆäÈ¡Öµ·¶Î§ÄÚÈ¡ÈÎÒâֵʱ£¬¡÷AOBµÄÃæ»ýΪ¶¨Öµ£¿Èç¹û´æÔÚ£¬Çó³önµÄÖµ£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Óɶ¥µã×ø±ê¹«Ê½£¨-
£¬
£©¿ÉµÃ´ð°¸£»
£¨2£©ÒÀÌâÒâ¿ÉµÃ
£¬½âÖ®¿ÉµÃkµÄÈ¡Öµ·¶Î§£»
£¨3£©¢Ùµ±Ö±ÏßlÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬ÓÐÖ±Ïß¹ý¶¥µã£¬¿ÉµÃn¹ØÓÚkµÄº¯Êý¹Øϵʽ£¬½ø¶ø¿É×÷³öÅжϣ»
¢Úµ±Ö±ÏßlÓëÅ×ÎïÏßÏཻÓÚA¡¢BÁ½µãʱ£¬Õý·½³Ìʽ¿ÉµÃÆä¶ÔÓÚÈÎÒâµÄkÖµ£¬·½³Ìʽºã³ÉÁ¢£¬¹ÊÅ×ÎïÏßµÄͼÏó¹ý¶¨µã£¬Òò´Ë¡÷AOBµÄÃæ»ýΪ¶¨Öµ£®
b |
2a |
4ac-b2 |
4a |
£¨2£©ÒÀÌâÒâ¿ÉµÃ
|
£¨3£©¢Ùµ±Ö±ÏßlÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬ÓÐÖ±Ïß¹ý¶¥µã£¬¿ÉµÃn¹ØÓÚkµÄº¯Êý¹Øϵʽ£¬½ø¶ø¿É×÷³öÅжϣ»
¢Úµ±Ö±ÏßlÓëÅ×ÎïÏßÏཻÓÚA¡¢BÁ½µãʱ£¬Õý·½³Ìʽ¿ÉµÃÆä¶ÔÓÚÈÎÒâµÄkÖµ£¬·½³Ìʽºã³ÉÁ¢£¬¹ÊÅ×ÎïÏßµÄͼÏó¹ý¶¨µã£¬Òò´Ë¡÷AOBµÄÃæ»ýΪ¶¨Öµ£®
½â´ð£º½â£º£¨1£©¡ß-
=1£¬
=-2k+9£¬£¨2·Ö£©
¡àÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨1£¬-2k+9£©£®£¨3·Ö£©
£¨2£©ÒÀÌâÒâ¿ÉµÃ
£¬£¨5·Ö£©
½âµÃ0£¼k£¼4£®¼´kµÄÈ¡Öµ·¶Î§ÊÇ0£¼k£¼4£®£¨6·Ö£©
£¨3£©¢Ùµ±Ö±ÏßlÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬¼´Ö±Ïßl¹ýÅ×ÎïÏߵĶ¥µã£¬
ÓÉ£¨1£©µÃn¹ØÓÚkµÄº¯Êý¹ØϵʽΪn=-2k+9£¨0£¼k£¼4£©£®£¨7·Ö£©
¢Ú½áÂÛ£º´æÔÚʵÊýn£¬Ê¹µÃ¡÷AOBµÄÃæ»ýΪ¶¨Öµ£®£¨8·Ö£©
ÀíÓÉ£ºn=kx2-2kx+9-k£¬ÕûÀí£¬µÃ£¨x2-2x-1£©k+£¨9-n£©=0£®
¡ß¶ÔÓÚÈÎÒâµÄkÖµ£¬ÉÏʽºã³ÉÁ¢£¬
¡à
£¬
½âµÃ
£¬£¨9·Ö£©
¡àµ±n=9ʱ£¬¶ÔkÔÚÆäÈ¡Öµ·¶Î§ÄÚµÄÈÎÒâÖµ£¬Å×ÎïÏßµÄͼÏó¶¼Í¨¹ýµã(1-
£¬9)ºÍµã(1+
£¬9)£¬
¼´¡÷AOBµÄµ×AB=2
£¬¸ßΪ9£¬
Òò´Ë¡÷AOBµÄÃæ»ýΪ¶¨Öµ9
£®£¨10·Ö£©
-2k |
2k |
4k(9-k)-(-2k)2 |
4k |
¡àÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨1£¬-2k+9£©£®£¨3·Ö£©
£¨2£©ÒÀÌâÒâ¿ÉµÃ
|
½âµÃ0£¼k£¼4£®¼´kµÄÈ¡Öµ·¶Î§ÊÇ0£¼k£¼4£®£¨6·Ö£©
£¨3£©¢Ùµ±Ö±ÏßlÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬¼´Ö±Ïßl¹ýÅ×ÎïÏߵĶ¥µã£¬
ÓÉ£¨1£©µÃn¹ØÓÚkµÄº¯Êý¹ØϵʽΪn=-2k+9£¨0£¼k£¼4£©£®£¨7·Ö£©
¢Ú½áÂÛ£º´æÔÚʵÊýn£¬Ê¹µÃ¡÷AOBµÄÃæ»ýΪ¶¨Öµ£®£¨8·Ö£©
ÀíÓÉ£ºn=kx2-2kx+9-k£¬ÕûÀí£¬µÃ£¨x2-2x-1£©k+£¨9-n£©=0£®
¡ß¶ÔÓÚÈÎÒâµÄkÖµ£¬ÉÏʽºã³ÉÁ¢£¬
¡à
|
½âµÃ
|
¡àµ±n=9ʱ£¬¶ÔkÔÚÆäÈ¡Öµ·¶Î§ÄÚµÄÈÎÒâÖµ£¬Å×ÎïÏßµÄͼÏó¶¼Í¨¹ýµã(1-
2 |
2 |
¼´¡÷AOBµÄµ×AB=2
2 |
Òò´Ë¡÷AOBµÄÃæ»ýΪ¶¨Öµ9
2 |
µãÆÀ£º±¾Ì⿼²éѧÉú½«¶þ´Îº¯ÊýµÄͼÏóÓë½âÎöʽÏà½áºÏ´¦ÀíÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÅ×ÎïÏßy=kx2£¨k£¾0£©ÓëÖ±Ïßy=ax+b£¨a¡Ù0£©ÓÐÁ½¸ö¹«¹²µã£¬ËüÃǵĺá×ø±ê·Ö±ðΪx1¡¢x2£¬ÓÖÓÐÖ±Ïßy=ax+bÓëxÖáµÄ½»µã×ø±êΪ£¨x3£¬0£©£¬Ôòx1¡¢x2¡¢x3Âú×ãµÄ¹ØϵʽÊÇ£¨¡¡¡¡£©
A¡¢x1+x2=x3 | ||||||
B¡¢
| ||||||
C¡¢x3=
| ||||||
D¡¢x1x2+x2x3=x1x3 |