题目内容
20、如图,?ABCD中,E是CD的延长线上一点,BE与AD交于点F.证明:△ABF∽△CEB.
分析:根据平行四边形对角相等可得∠A=∠C,对边平行可得AB∥CD,根据两直线平行,内错角相等得到∠ABF=∠E,然后利用两角对应相等,两三角形相似即可证明.
解答:证明:∵四边形ABCD是平形四边形,
∴∠A=∠C,AB∥CD,
∵AB∥CD,
∴∠ABF=∠E,
在△ABF和△CEB中,∠A=∠C,∠ABF=∠E,
∴△ABF∽△CEB.
∴∠A=∠C,AB∥CD,
∵AB∥CD,
∴∠ABF=∠E,
在△ABF和△CEB中,∠A=∠C,∠ABF=∠E,
∴△ABF∽△CEB.
点评:本题主要考查了平行四边形的性质,相似三角形的判定,找出对应角相等是证明的关键.
练习册系列答案
相关题目
如图,?ABCD中,AB⊥AC,AB=1,BC=
,对角线AC,BD相交于O点,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F,下列说法不正确的是( )
5 |
A、当旋转角为90°时,四边形ABEF一定为平行四边形 |
B、在旋转的过程中,线段AF与EC总相等 |
C、当旋转角为45°时,四边形BEDF一定为菱形 |
D、当旋转角为45°时,四边形ABEF一定为等腰梯形 |