题目内容
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
解:①由图象可知:抛物线对称轴位于y轴右侧,则a、b异号,所以ab<0.
抛物线与y轴交于正半轴,则c>0,所以abc<0,故①错误;
②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;
③由图可知,x<0时,y随x的增大而增大,故③正确;
④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣ =1,
即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),故⑤正确.
综上所述,③④⑤正确.
故选:C.
练习册系列答案
相关题目